CHAPTER 6

MODEL FOR TUMOUR ANGIOGENESIS

6.1 Introduction

Tumour angiogenesis factor (TAF) having concentration c(x,t) is secreted by the
solid tumour and diffuses into the surrounding tissue. Upon reaching neighbouring
endothelial cells situated in the TAF stimulates the release of enzymes by the endothelial
cells which degrades their basement membrane. Then, the initial response of the
endothelial cells is to migrate towards the source of angiogenic stimulus. Capillary
sprouts are formed and cells subsequently begin to proliferate at a later stage. As a
results, mitosis is largely confined to a region a short distance behind the sprout tips
(Auspruk & Folkman, 1977; Sholley et al, 1984; Paweletz & Knierim, 1989; Stokes &
Lauffenburger, 1991; Chaplain, 1996). In this chapter, we introduced a tumour

angiogenesis model which is extended from the previous avascular model.

6.2 Mathematical background

The conservation equation for the TAF concentration, under the assumption of linear

Fickian diffusion, can be written mathemathically as

< ~D,ve- f(e)gln)-hlc) (6.1
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where D, is the TAF diffusion coefficient, the second and third terms of the left side of

equatics are losses due to cells and decay of chemicals, respectively. We assume that the
local rate of uptake of TAF by the endothelial cells (modelled by the function f(c)) IS
governed by Michaelis-Menten kinetics (Chaplain & Stuart, 1991; Chaplain, 1996)] and
that it also depends on the cells, the more TAF will be removed by the cells acting as
sinks (Ausprunk & Folkman, 1977; Chaplain & Stuart, 1991). For simplicity, the actual
function used in the model is given by g(n)= n/n,, a simple linear function. We also
assume that the decay of TAF with time is governed by first-order kinetics, a standard

assumption (Sherrat & Murray, 1990). This leads to the following equation for the TAF

in the external tissue:

oc 2 Qcn
—=DVc——-~——-d 6.2
ot V¢ (K, +c)n, ¢ 62)
The initial condition is
c(x,0)=c,(x) (6.3)

where co(x) is a prescribed function chosen to describe qualitatively the profile of TAF

in the external tissue when it reaches the limbal vessels (Chaplain & Stuart, 1991). The

TAF is assumed to have a constant value c, on the boundary of the tumour and to have

decayed to zero at the limbus giving the boundary conditions as
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c0,t)=c, c(Lt)=0 (6.4)
The endothelial cells are the principal characters in the drama of angiogenesis and are
always centre stages (Paweletz & Knierim, 1989). It is therefore highly desirable and
logical to include in our model an equation modeling the endothelial cells. We will thus
follow the route of the endothelial cells from their origin in their parent vessel (e.g., the
limbus), their crossing of the extracellular matrix and other material in the surrounding

host tissue to their destination within the tumour.

The first events of angiogenesis are rearrangements and migration of endothelial
cells rather than induction of cell division (Paweletz & Knierim, 1989; Paku & Paweletz,
1991). In response to the angiogenic stimulus, endothelial cells in the neighbouring
normal capillaries which do not possess a muscular sheath are activated to stimulate
proteases and collageness. The endothelial cells which are recruited from the parent
vessel and the sprouts grow in length by migration of the endothelial cells (Cliff, 1963;

Schoefl, 1963; Warren, 1966; Sholley et al, 1984).

The main event we are modeling are the migration and proliferation of the

endothelial cells which are not linked together. A general conservation equation for the

endothelial cell density n(x,t) (Chaplain, 1996) is given by

% +v. 3 =F(n)s(c)-H(n) (65)
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where J is the cell flux, F(n) and H(n) are functions representing a normalized growth

term and a loss term, respectively. The mitosis is governed by logistic type growth and

that cell loss is a first order process (Chaplain, 1996; Sholley et al, 1984). Thus

F(n)= rn(l—lJ (6.6)

H(n)=-k,n (6.7)

where ris a positive constant related to the maximum mitotic rate and k, is the

proliferation rate constant which is taken to be the reciprocal of the endothelial cell
doubling time (Stokes & Lauffenburger, 1991; Sherrat & Murray, 1990). Further we
assume that the endothelial cell proliferation is controlled in some way by the TAF
(Paweletz & Knierim, 1989; Paku & Paweletz, 1991). Thus in the present model, we

chose G(c) to be of the form

Glc)= (6.8)

where ¢” <c,.

We assume that the flux J of endothelial cells consists of two parts, one representing
random motion and the other chemotactic motion of the cells (Auspruk & Folkman,

1977; Sholley et al, 1984; Stokes & Lauffenburger, 1991). Thus
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J = Jyiffusion + Jchemotaxis . (6.9)

We assume linear diffusion so that

Jaiffusion = — D, Vn (6.10)

where D, is the diffusion coefficient of the endothelial cells and

Jehemotaxis = n)((C)VC (6.11)

the well-known form for the chemotactic flux. Various functional forms have been

proposed for y(c) including a logarithmic law

FORES (6.12)
a receptor Kinetic law
2(c)= (k}f :)z (6.13)
and a constant law
7(c)= x, (aconstant). (6. 14)
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For mathematical simplicity we take Z(C)= X, aconstant. The cell conservation equation

can be written
Rate of increase of cell density = cell migration + mitotic generation — cell loss  (6.15)

With the above assumption, we thus have the following population diffusion-chemotaxis

equation for the endothelial cells as

% =D,V?n— y,V{(nvc)+ rn(l—nle(c)— k,n (6.16)
0

We assume that initially the endothelial cell density at the limbus is a constant n,and

zero elsewhere, giving initial condition
n(x,0)= (6.17)

We assume that throughout the subsequent motion, the cell density remains constant at

the limbus and hence the boundary condition here becomes

n(L,t)=n, (6.18)
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As stated previously, the main aim of the model is to monitor the progress of the
endothelial cells (in particular those at the sprouts tip) as they cross the ECM (extra
cellular matrix) and eventually reach the tumour. Once they reach the tumour and
penetrate it, interactions with the tumour cells become important (Paweletz & Knierim,
1989) and the assumptions of the present model are no longer hold. Thus within the
assumption and limitations of the present model,we consider the following boundary

condition at x = 0: (Liotta & Kleinerman, 1977; Chaplain & Sleeman, 1990).

n=0 at x=0 (6.19)

We normalize the equations using the following reference variables:
o reference TAF concentration: c,, the value of the TAF concentration at the
tumour boundary,
o reference cell density: n,, the value of the endothelial cell density at the limbus,
o reference length: L, the distance from the tumour bondary to the limbal vessels,

e reference time unit: z=L2/D.

We thus define new variables:
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Dropping the tildes and specialising to a one-dimensional geometry, the equations now

become
& _d'c_amc
ot ox* y+c
on o°n o( oc
—=D——-x—| n— |+ (1-n)G(c)-
" _pl a[axj in(1-n)6(c)- fn
where
0, c<c
G(c)=
c-c’, c
2
azLQ| y_K_’
Dch Cb
D=D”, K=Cbl°
D D

c(0,t)=1; c(Lt)
n(Lt)=1

n=0at x=0

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)
(6.28)

(6.29)
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The TAF concentration profile in the external host tissue according to the above model
does not vary drastically throughout the complete process (Chaplain et al, 1995). The
TAF is estimated to diffuse very much faster than the cells and can be reasonably
expected to be in some kind of steady state. In order to simplify the complete system and
thus make it amenable to mathematical analysis, we make the assumption that the TAF
concentration in the external host tissue does not upon time (Stokes & Lauffenburger,

1991). This has the effect of reducing Egs. (6.21 — 6.22) to a single equation:

on o’n  on
—=D——-x—+ ull—x)n(A—-n) - 6.30
~ -7k pl=x)n@—n)— pn (6.30)

Subject to the initial condition
n(x,0)=1 (6.31)

To obtain the approximate solution of Eq. (6.30) by integrating one time from Eq. (6.30)

with respect to t and using the initial condition, we obtain

u(x,t)= £(x)+ D] T g ang(’t)dt ] @ X)n(i-ndt - ] n(x,tt

(6.32)
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In Eq. (6.32), we assume f(x) is bounded for all x in J=[0,T](T e®R) and

t—z/<m',v0<t,z<T

2
We set F(r)=z(1—x)n(L—n). The terms %? and F(n) are Lipschitz continuous
X2 Ox
with
o’u  9°n*
o o |2 R0
on  on*
NN (h—n*
X OX :(n-n%)
IF(n)-F(*)<Ly(n-n*)
and

a=T(m'L +m'L, +m'L,)

B=1-T(l-a) (6.33)
6.3. Adomian Decomposition Method (ADM)
The Adomian decomposition method is applied in Eq. (6.30):
%: DZTZ?—K%+#(1— x)n(l—n)- Bn (6.34)
where L, = 2 (6.35)
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is an integrable differential operator with
-1 _ t
L= | (e (6.36)

Operating on both sides of Eq. (6.34) with the integral operator L™ defined by Eq. (6.36)

leads to

n(xt) = n(x)+ LHG_”J _ K(gj 4 iN(xt)— ﬁn} (637)

8X2

where n(x)=n(x,0) and N(x,t)=(1—x)n(L—n). The solution n(x,t)can be decomposed

by an infinite series as follows (Adomian, 1994):

n(xt)=3"n(xt (6.38)

i=0

Substituting Eq. (6.38) into (6.37) gives

m=0 m=0

inm n(x,0)+ L~ [Di Ny — K‘i Ny, + N (x,t)—ﬁi nm} (6.39)

The nonlinear term N(x,t)is decomposed by the following infinite series:

o0

N (xt)=> A, , k=12 (6.40)

m=0
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where A, is called Adomian’s polynomial and define by:

1[d" (&, .
Am:m{WNk(z/lniHH . i>0 (6.41)

i=0

The components nnm(x,t) of the solution n(x,t) can be elegantly completed by using the

following recursive relationships:

ny(x,t)=n(x,0) (6.42)

ol ~o°n,  on,
nm+1(x,t)=I D PV +uA, - pn dz , Vm=>0 (6.43)
0

Having determined the components n,, n;, n,, ...the solution n in a series form defined

by Eq. (6.38) follows immediately.
6.4 Homotopy Perturbation Method (HPM)

To solve Eq. (6.30) with the HPM method, we construct the following homotopy:

on on on d°n on
p) = o 222 o f 202 Lkl |0

(6.44)

or

77



2
(@_%}r p{— a—n+xz—;7—y(l—x)n(l—n)+Bn+%}:0 (6.45)

In HPM, the solution of Eq. (6.45) is expressed as
N=10+ P+ P, + P+ P+ (6.46)

where pe [0,1] is an embedding parameter and 7, is an arbitrary initial approximation

satisfying the given initial condition. Hence, the approximate solution of Eq. (6.30) is

expressed as a series of the power of p. As p approaching to 1, we obtained
n(x,t)=|ggnln=no+f71+772+773+774+---=§f7n (6.47)

Substituting Eq. (6.46) into Eq. (6.45) and:
3 on 52
H(m, p)=—= (0 + Py + P°11, + P15 + P°17,) ——=2 + Py - D_2(770 + P+ PP, + PP,
ot ot OX
3
+p°n, )+ K&(ﬂo T+, + PPy + PO+ D, )— = XN + P, + PP, + PO + D7)

on
x(L=175 = P11y — D277, — D°713 J¢ Bling + P + D271, + P11 ++p‘°’m)+#}

(6.48)
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Equating the coefficients of the terms in Eq. (6.48) with the identical powers of p we get

0. 0N,

on,

po: T g

ot

1, 0m 0%, Omg

ot

on
/J(l_ X)(no _7702)"':3770 +EO =0

ot ox? OX
7 2T DO O 1, - 20+ i, =0
p®: 8;3 -D 62;722 +Ka£(2 —,u(l—x)(nz —n? —2770772)+ pn, =0
p*: agt“ -D a;(;; +'<887)7(3 — 11— xXr75 — 27517, — 27,1, )+ 75 = O

Solving Egs. (6.47 — 6.50), we will have the solution of Eq. (6.30).

(6.49)

(6.50)

(6.51)

(6.52)

(6.53)
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6.5 Existence and convergence of ADM and HPM

Theorem 6.1: Let 0 < a <1, then Eq. (6.30) as a unique solution.

Proof: Let n and n”be two different solutions of Eq. (6.32) then

Dj{a n(x,t) o°n"(x ,t)}dt_’{j-(ﬁn(x,t)_Gn*(x,t)]dt

2
0 OX o\ OX OX

*

‘n—n

j 1ndt,b’jnnt
0

KJ‘- on on*

0

OX OX

dt + p(1- x)j.|n(1— n)—n*(@-n*)dt +ﬂj'|n —n*dt

2 2~ %
Da_r21_5‘_n2 dt +
OX OX

<T(m'L +m'L, +m'Ly Jn—n*

t
<
0

=ajn—n*

From which we get (1-a)n—n*<0. Since 0 < <1, then [n—n*=0. Implies n=n*

and completes the proof.

Theorem 6.2: The series solution n X, t = Zn, X, t of Eq. (6.30) using ADM converges
i=0

if 0<a <1, In(x,t) <o
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Proof: Denote as (C[3]]) the Banach space of all continuous functions on J with the
norm | f(t)] = max Vv, e J. Define the sequence of partial series {S,}; LetS,and S, be

arbitrary partial sums with n>m.We prove that S is a Cauchy sequence in this Banach

space:

IS, =S| =max|S, —S

Vted

ol

= MmaX
Vtel

i=m+

n t azn t@n t t
= max zl( - i dt+1<_|.a—xidt+/,1(1—x)_[ni (L—n, )dt—.fﬂnidt)
0 0

vted izmr1 o X 0

:

= n

Dj(i%)dt+xi(§8§)‘(jdt+yl xi[ n(@-n, ]dt—ﬂ I(Zn,jdt

0 \I=m o \i=m i=m

From Kalla (2008), we have

*(8,1)-G*(8y1)

So,
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a nk—m—l
ox?

5, S0l = max ey
OX

Vted

dt + |
0

t t
dit+ | 21— X) [ 1y @ = 0y bt +[ B[yt
0 0

< |D|h(32(sn_1)—<32(sm_1)|dt + |;<|j|G(sn_1)— G(S,, )Jdt +|u(1~ x)|j|F1(Sn_l)— F. (S, Jdt

|ﬂ|J.|F2 (Sn—l)_ Fz (Sm,l Mdt

<a|S, =S,

Let n=m+1, then

[Snia =Sl < Sy =S

m+1

<a?||Syy = Snl|

<a™|S, -S|

From the triangle inequality, we have

IS, =Snl <l

m+1
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Since O<a<1, we have (l—a"")<Lthen [S,—S ||<—max
o Vted

u(xt). But

lu,(x,t] <oo,50 as m—>oothen [S,—S,|—0. We confidence that{S,}is a Cauchy

sequence in C[J ] therefore the series is converges and the proof is completed.

xt of Eq. (6.30)

Theorem 6.3: If |n, (x,t) <1, then the series solution n(x,t)=">n,(
i=0

converges to the exact solution by using HPM.

Proof: We set

n

We set, % (xt)=2m(xt)

i=1

n+1

Zn X,t)
So,
6,0 (1) =, (1) =[¢, +n, ~ 4
=n,|

anmkl

Ko

4|l j|nk,m,1|dt
0

dt +|x |j| gxm-l dt + (1~ x)|j|nkm1(1 Mo I

Thus
Z||¢n+1xt 4, (1) < (m—1)ef F (X)> "
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Since 0 < a <1, therefore [imu, (x,t)=u(xt)

n—oo

6.6 Numerical experiment

In this section, we compute numerically Eq. (6.30) by the ADM and HPM methods.

6.6.1 ADM method

From Eq.(6.41), we can obtain the first four terms of the Adomian polynomials as

A = (1_ X)(l_ Ny )no (6.54)
A = Ljd_/l (1—x)1—(ny + An, n, +An, ))l_O

=(1-x)n,(1-2n,) (6.55)

1d? 2 2

A = EW[(].— X)(l—(no +An, + 4%, )Xno +An, +4°n, )],1:0

_ (1_ X)(I’]Z _2nyn, - nlz) (6.56)
A, = %;722[(1— x)(l— (n0 +An, +A°n, + A°n, )X”o + AN, + A0, + 2%, )]/1:0

= (1-x)n, —2n4n, —2n;n, ) (6.57)

By the recursive formula in Eq. (6.43), we can obtain directly the components of n; as

n, =1 (6.58)
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N (6.59)

n, = Alult-x)+ A1 (6.60)

3

n, = plaoc = Alull-x)+ ) - L= Xt x) + 3P (6.61)

N, = D + rtxl= X)~ 20+ 3ull - X)B(ult~ X)) (s ll = X LX)+ 3)

-l x) s PNala- )+ A
(6.62)

We substitutes the components of n; into Eg. (6.38), then we obtain the solution of Eq.

(6.30) as below:

() =1 A Al x) s B+ e pluli—x) ) W) +3) S
+ Bl D + il - x)~ 2p0r + 3L~ X)L~ x) + ﬂ)—%(wf— (1= x) (1~ x)+3p)

4

- Alult=x)+ P ul=x)+ Al

(6.63)
6.62 HPM method
Following the HPM method, from Egs. (6.49 - 6.53), we obtain
t a2770 o, on
= —k— —ull—x - — 0 dt
m _([[ X’ X ,U( )(770 770) B, ot
- A (6.65)
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t

0? 0
n, = !(Dax—zl—lc%—ﬂ(l_ X)(2770771 —ﬂl)—ﬁ’hjdt

2

- Alult-x)+ A1 (6.66)

t 62 2 0
7, = !(D%—K%—ﬂ(l— x\2n,11, + 1 —ﬂz)—ﬂﬂzjdt

3

_ Bluxc— Blull=x)+ B)— ull— XN 1= x)+ 3,8)]% (6.67)

=j p s O (L= xX2170775 + 2,71, — 115 )— B, |dlt
4 J ox2 ox H oMz + £141], —1]3 73

= Pl + rxl = X)~ 20+ 3ut - X) Bt X) + B) - (i — lt - ¥t~ X)+ 36)
Al x)+ PN x)+ I
(6.68)

We substitutes the components of n; into Eq. (6.47), then we obtain the solution of Eq.

(6.30) as below:

3

n(xt)=1-ft+ Blull- x)+ﬂ]§ + plurc = pluld=x)+ ) - puld = x) pll - x)+3,8)]%

+ BluD + (L —x) - 2 + 3ulL— X)B(ull— X) + ﬂ)—%(wf— (L= xY (1 x)+3p)

- Blult=x)+ A ul=x)+ Al

(6.69)
It is obvious that the first five terms approximate solutions (Egs. (6.58 — 6.62)) obtained

using ADM are the same as the first four terms (Eqgs. (6.64 — 6.68)) of the HPM.
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Figure 6.1. The ratio convergence test applied to the series coefficients (endothelial cell)

for ADM and HPM as a function of the number of terms in series.
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ADM and HPM provide analytical solution in terms of an infinite power series (see Eq.
(6.38) for ADM and Eq. (6.47) for HPM). The series consists of both positive and
negative terms, although not in a regular alternating fashion. The ratio test was applied to
the absolute values of the series coefficient. This provides a sufficient condition for

convergence of the series for a space interval AX in the form

1
<_

AX (6.70)

a‘m+1

am

lim

m—o0

However, the approach in this study was to replace Eq. (6.70) with

1
<_

AX (6.71)

am-¢—1

am

lim

m—>M

where M is a large constant. The behavior of the function f(m) = |am+1 /an| for increasing
values of m was then observed as presented in Figure 6.1. It is clear from this figure that
the ratio f(m) decays as m increases, obviously indicating that the series is convergent.

Figure 6.2 demonstrates that the initial response of the endothelial cells is essentially one

of migration with proliferation of the cells.
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Figure 6.2. ADM and HPM solution of Equation (6.30). Profile of the endothelial cell

density in the external host tissue at time t = 0.1.
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6.7 Summary

In this chapter, we have presented a mathematical model for tumour angiogenesis based
on ADM and HPM methods. The complete process of angiogenesis is a complicated one
involving several district and not necessary related events. To formulate a single
mathematical model which would include all of these processes would be very difficult
indeed. Here, we choose to focus our attention primarily on the endothelial cells
concentration profile. We have modeled it in a simple but effective manner using ADM
and HPM. Our results are in a good agreement with other models such as Stokes &
Lauffenburger (1991) which being numerically solved. The nonlinear equation has been
analyzed using ADM and HPM in which the nonlinear problems were treated in a manner
similar to linear problems. Linearization, approximation and assumption are unnecessary
during the analytic processes of both methods including faster convergence and higher

accuracy. It may be used to solve the problems associated with the complex conditions.
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