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                         CHAPTER 6  
 

 

MODEL FOR TUMOUR ANGIOGENESIS 
 

 

 

6.1 Introduction 

 

           Tumour angiogenesis factor (TAF) having concentration c(x,t) is secreted by the 

solid tumour and diffuses into the surrounding tissue. Upon reaching neighbouring 

endothelial cells situated in the TAF stimulates the release of enzymes by the endothelial 

cells which degrades their basement membrane. Then, the initial response of the 

endothelial cells is to migrate towards the source of angiogenic stimulus. Capillary 

sprouts are formed and cells subsequently begin to proliferate at a later stage. As a 

results, mitosis is largely confined to a region a short distance behind the sprout tips 

(Auspruk & Folkman, 1977; Sholley et al, 1984; Paweletz & Knierim, 1989; Stokes & 

Lauffenburger, 1991; Chaplain, 1996). In this chapter, we introduced a tumour 

angiogenesis model which is extended from the previous avascular model. 

 

6.2 Mathematical background 

 

    The conservation equation for the TAF concentration, under the assumption of linear 

Fickian diffusion, can be written mathemathically as  

 

                                      chngcfcD
t

c
c 



 2                                                       (6.1) 
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where  cD  is the TAF diffusion coefficient, the second and third terms of the left side of 

equatics are losses due to cells and decay of chemicals, respectively. We assume that the 

local rate of uptake of TAF by the endothelial cells (modelled by the function  cf ) is 

governed by Michaelis-Menten kinetics (Chaplain & Stuart, 1991; Chaplain, 1996)] and 

that it also depends on the cells, the more TAF will be removed by the cells acting as 

sinks (Ausprunk & Folkman, 1977; Chaplain & Stuart, 1991). For simplicity, the actual 

function used in the model is given by   0/ nnng  , a simple linear function. We also 

assume that the decay of TAF with time is governed by first-order kinetics, a standard 

assumption (Sherrat & Murray, 1990). This leads to the following equation for the TAF 

in the external tissue:            

     

                                         
 
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2                                              (6.2) 

 

The initial condition is  

                                                        xcxc 00,                                                              (6.3) 

 

where   xc0  is a prescribed function chosen to describe qualitatively the profile of TAF 

in the external tissue when it reaches the limbal vessels (Chaplain & Stuart, 1991). The 

TAF is assumed to have a constant value bc  on the boundary of the tumour and to have 

decayed to zero at the limbus  giving the boundary conditions as   
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                                        bctc ,0           0, tLc                                                      (6.4) 

The endothelial cells are the principal characters in the drama of angiogenesis and are 

always centre stages (Paweletz & Knierim, 1989). It is therefore highly desirable and 

logical to include in our model an equation modeling the endothelial cells. We will thus 

follow the route of the endothelial cells from their origin in their parent vessel (e.g., the 

limbus), their crossing of the extracellular matrix and other material in the surrounding 

host tissue  to their destination within the tumour. 

      

         The first events of angiogenesis are rearrangements and migration of endothelial 

cells rather than induction of cell division (Paweletz & Knierim, 1989; Paku & Paweletz, 

1991). In response to the angiogenic stimulus, endothelial cells in the neighbouring 

normal capillaries which do not possess a muscular sheath are activated to stimulate 

proteases and collageness. The endothelial cells which are recruited from the parent 

vessel and the sprouts grow in length by migration of the endothelial cells (Cliff, 1963; 

Schoefl, 1963; Warren, 1966; Sholley et al, 1984). 

     

          The main event we are modeling are the migration and proliferation of the 

endothelial cells which are not linked together. A general conservation equation for the 

endothelial cell density  txn ,  (Chaplain, 1996) is given by 

                                                

                                              nHcGnFJ
t

n





.                                                (6.5) 
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where J is the cell flux,  nF  and  nH  are functions representing a normalized growth 

term and a loss term, respectively. The mitosis is governed by logistic type growth and 

that cell loss is a first order process (Chaplain, 1996; Sholley et al, 1984). Thus 

 

                                                 
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
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1
n

n
rnnF                                                            (6.6)           

                                                     nknH p                                                                (6.7) 

 

where r is a positive constant related to the maximum mitotic rate and pk  is the 

proliferation rate constant which is taken to be the reciprocal of the endothelial cell 

doubling time (Stokes & Lauffenburger, 1991; Sherrat & Murray, 1990). Further we 

assume that the endothelial cell proliferation is controlled in some way by the TAF 

(Paweletz & Knierim, 1989; Paku & Paweletz, 1991). Thus in the present model, we 

chose  cG  to be of the form 
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                                                (6.8) 

where  bcc * . 

We assume that the flux J of endothelial cells consists of two parts, one representing 

random motion and the other chemotactic motion of the cells (Auspruk & Folkman, 

1977; Sholley et al, 1984; Stokes & Lauffenburger, 1991). Thus  
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                               J = Jdiffusion + Jchemotaxis .                                                                           (6.9)   

 

We assume linear diffusion so that  

 

                            Jdiffusion = nDn                                                                              (6.10) 

 

where nD  is the diffusion coefficient of the endothelial cells and  

 

                           Jchemotaxis =    ccn                                                                           (6.11) 

 

the well-known form for the chemotactic flux. Various functional forms have been 

proposed for    c  including a logarithmic law  

 

                                          
c

c 0                                                                             (6.12)          

a receptor kinetic law 
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
                                                                         (6.13) 

and a constant law 

 

                          0 c  (a constant).                                                                        (6. 14) 
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For mathematical simplicity we take   0 c , a constant. The cell conservation equation 

can be written  

 

   Rate of increase of cell density = cell migration + mitotic generation – cell loss    (6.15)                 

 

With the above assumption, we thus have the following population diffusion-chemotaxis 

equation for the endothelial cells as 
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We assume that initially the endothelial cell density at the limbus is a constant 0n and 

zero elsewhere, giving initial condition 
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                                                               (6.17) 

 

We assume that throughout the subsequent motion, the cell density remains constant at 

the limbus and hence the boundary condition here becomes 

 

                                               0, ntLn                                                                         (6.18) 
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As stated previously, the main aim of the model is to monitor the progress of the 

endothelial cells (in particular those at the sprouts tip) as they cross the ECM (extra 

cellular matrix) and eventually reach the tumour. Once they reach the tumour and 

penetrate it, interactions with the tumour cells become important (Paweletz & Knierim, 

1989) and the assumptions of the present model are no longer hold. Thus within the 

assumption and limitations of the present model,we consider the following boundary 

condition at x = 0: (Liotta & Kleinerman, 1977; Chaplain & Sleeman, 1990). 

 

                               0n    at  x = 0                                                                             (6.19) 

 

We normalize the equations using the following reference variables: 

 reference TAF concentration: ,bc  the value of the TAF concentration at the 

tumour boundary, 

 reference cell density: ,0n  the value of the endothelial cell density at the limbus, 

 reference length: ,L  the distance from the tumour bondary to the limbal vessels, 

 reference time unit: ./2 DL  

 

We thus define new variables: 
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Dropping the tildes and specialising to a one-dimensional geometry, the equations now 

become 
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where 
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The initial and boundary conditions become 

 

                                             2

0 10, xxcxc                                                           (6.25) 
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                                            1,0 tc ;   0,1 tc                                                           (6.27) 

                                             1,1 tn                                                                             (6.28) 

                                           0n  at  0x                                                                   (6.29) 
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The TAF concentration profile in the external host tissue according to the above model 

does not vary drastically throughout the complete process (Chaplain et al, 1995). The 

TAF is estimated to diffuse very much faster than the cells and can be reasonably 

expected to be in some kind of steady state. In order to simplify the complete system and 

thus make it amenable to mathematical analysis, we make the assumption that the TAF 

concentration in the external host tissue does not upon time (Stokes & Lauffenburger, 

1991). This has the effect of reducing Eqs. (6.21 – 6.22) to a single equation: 
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                              (6.30) 

 

Subject to the initial condition 

 

                                                                 10, xn                                                       (6.31) 

 

To obtain the approximate solution of Eq. (6.30) by integrating one time from Eq. (6.30) 

with respect to t  and using the initial condition, we obtain  
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In Eq. (6.32), we assume  xf  is bounded for all x  in   TTJ ],0[  and 

Ttmt   ,0,'                                                                                               

 

We set      nnxrF  11 . The terms 
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6.3.  Adomian Decomposition Method (ADM) 

 

The Adomian decomposition method is applied in Eq. (6.30): 
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where                                   
t

Lt



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is an integrable differential operator with 
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Operating on both sides of Eq. (6.34) with the integral operator 1L defined by Eq. (6.36)  

leads to  
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where    0,xnxn   and      nnxtxN  11, . The solution  txn , can be decomposed 

by an infinite series as follows (Adomian, 1994): 
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Substituting Eq. (6.38) into (6.37) gives 
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The nonlinear term  txN , is decomposed by the following infinite series: 
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where kmA is called Adomian’s polynomial and define by: 
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The components  txnnm ,  of the solution  txn ,  can be elegantly completed by using the 

following recursive relationships: 
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Having determined the components 0n , 1n , 2n , …the solution n in a series form defined 

by Eq. (6.38) follows immediately. 

 

6.4  Homotopy Perturbation Method (HPM) 

 

To solve Eq. (6.30) with the HPM method, we construct the following homotopy: 
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or 
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In HPM, the solution of Eq. (6.45) is expressed as 
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where  1,0p  is an embedding parameter and o is an arbitrary initial approximation 

satisfying the given initial condition. Hence, the approximate solution of Eq. (6.30) is 

expressed as a series of the power of p. As p approaching to 1, we obtained 
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Substituting Eq. (6.46) into Eq. (6.45) and: 
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Equating the coefficients of the terms in Eq. (6.48) with the identical powers of p we get 
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Solving Eqs. (6.47 – 6.50), we will have the solution  of Eq. (6.30).   
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6.5  Existence and convergence of ADM and HPM    

 

Theorem 6.1:  Let 10  , then Eq. (6.30) as a unique solution. 

  Proof:  Let n  and *n be two different solutions of Eq. (6.32) then  
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and completes the proof. 

 

Theorem 6.2: The series solution    
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Proof: Denote as   .,JC  the Banach space of all continuous functions on J with the 

norm   Jtf t  max . Define the sequence of partial series  nS ; Let nS and mS be 

arbitrary partial sums with .mn  We prove that nS is a Cauchy sequence in this Banach 

space:    
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From Kalla (2008), we have 
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Since 10  , we have   ,11  mn then  txuSS
Jt

m

mn ,max
1

1






. But 

  ,,1 txu so as m then .0 mn SS  We confidence that nS is a Cauchy 

sequence in  JC , therefore the series is converges and the proof is completed. 

 

Theorem 6.3: If   ,1, txnm , then the series solution    
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Since 10  , therefore    txutxun
n

,,lim 


  
. 

 

6.6   Numerical experiment 

 

In this section, we compute numerically Eq. (6.30) by the ADM and HPM methods.  

 

6.6.1 ADM method 

 

From Eq.(6.41), we can obtain the first four terms of the Adomian polynomials as 
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By the recursive formula in Eq. (6.43), we can obtain directly the components of ni as 

1on
                                                                                                                           (6.58) 
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We substitutes the components of ni into Eq. (6.38), then we obtain the solution of Eq. 

(6.30) as below: 
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6.62 HPM method 

Following the HPM method, from Eqs. (6.49 - 6.53), we obtain 
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We substitutes the components of ni into Eq. (6.47), then we obtain the solution of Eq. 

(6.30) as below:
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(6.69) 

It is obvious that the first five terms approximate solutions (Eqs. (6.58 – 6.62)) obtained 

using ADM are the same as the first four terms (Eqs. (6.64 – 6.68)) of the HPM.  
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Figure 6.1. The ratio convergence test applied to the series coefficients (endothelial cell) 

for ADM and HPM as a function of the number of terms in series. 
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ADM and HPM provide analytical solution in terms of an infinite power series (see Eq. 

(6.38) for ADM and Eq. (6.47) for HPM). The series consists of both positive and 

negative terms, although not in a regular alternating fashion. The ratio test was applied to 

the absolute values of the series coefficient. This provides a sufficient condition for 

convergence of the series for a space interval X  in the form  

                                                              Xa

a

m

m

m 




1
lim 1

                                              (6.70)               

However, the approach in this study was to replace Eq. (6.70) with  

                                                               Xa

a

m

m

Mm 




1
lim 1

                                            (6.71)   

where M is a large constant. The behavior of the function f(m) = |am+1 /am| for increasing 

values of m was then observed as presented in Figure 6.1. It is clear from this figure that 

the ratio f(m) decays as m increases, obviously indicating that the series is convergent.  

Figure 6.2 demonstrates that the initial response of the endothelial cells is essentially one 

of migration with proliferation of the cells. 
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Figure 6.2. ADM and HPM solution of Equation (6.30). Profile of the endothelial cell 

density in the external host tissue at time t = 0.1. 
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6.7  Summary 

In this chapter, we have presented a mathematical model for tumour angiogenesis based 

on ADM and HPM methods. The complete process of angiogenesis is a complicated one 

involving several district and not necessary related events. To formulate a single 

mathematical model which would include all of these processes would be very difficult 

indeed. Here, we choose to focus our attention primarily on the endothelial cells 

concentration profile. We have modeled it in a simple but effective manner using ADM 

and HPM. Our results are in a good agreement with other models such as Stokes & 

Lauffenburger (1991) which being numerically solved. The nonlinear equation has been 

analyzed using ADM and HPM in which the nonlinear problems were treated in a manner 

similar to linear problems. Linearization, approximation and assumption are unnecessary 

during the analytic processes of both methods including faster convergence and higher 

accuracy. It may be used to solve the problems associated with the complex conditions. 
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